
Reverse Engineering Cryptocurrency Smart
Contracts

1st Davis Beilue
Computer Science and Engineering

Texas A&M University
davis.beilue@tamu.edu

2nd Liam Bessell
Computer Science and Engineering

Texas A&M University
lbessell@tamu.edu

3rd Matthew Ho
Computer Science and Engineering

Texas A&M University
mattho@tamu.edu

Abstract—In this project we will reverse engineer Ethereum
smart contracts, programs that run on the Ethereum platform.
We aim to analyze the overall binary structure of smart contracts
and identify different security vulnerabilities in them. Upon
completion of the project we hope to have a better understanding
of reverse engineering and smart contracts as a whole.

Index Terms—Blockchain, Smart contract, Reverse engineer-
ing, Cryptocurrency

I. INTRODUCTION

Bitcoin launched in 2009 and was the first successful
decentralized, digital currency - or cryptocurrency. Now there
are thousands of cryptocurrencies, and while each has their
own unique properties, they all rely on blockchain technology.
Simply put, a blockchain is a growing list of records linked
together via cryptography. It is impossible to modify a block
without changing its subsequent blocks. Thus on a distributed
network, one node can’t change a block without the others
knowing about it and consenting to the change. This creates
a secure and decentralized database system which make up
the benefits of cryptocurrencies.

In this project we will be focusing on the Ethereum
network, which is a programmable blockchain that runs on
the Ether cryptocurrency. One of the key differences between
Ethereum and Bitcoin is that the Ethereum blockchain can
hold and execute programs called smart contracts. A smart
contract is simply a program that runs on the Ethereum
blockchain. It is useful to think of a smart contract like a
vending machine; it takes some input in the form of Ethereum
tokens and a selection, then outputs or fulfills the product or
service.

Since smart contracts exist on the Ethereum blockchain,
their bytecode is publicly accessible and can be reverse
engineered [1]. There are a number of reasons for wanting
to reverse engineer a smart contract. First and foremost is
ensuring that it is actually doing what is advertised. It is
trivial to ensure that given a certain input, the advertised
output is fulfilled. However, it could be argued that reverse
engineering the contract before a transaction takes place
would ensure the expected output is given. There is further
motivation though: what if the smart contract does something

unexpected behind the scenes?

It is important to note that many smart contract authors do,
in fact, publish the source code of their contract along with the
bytecode. This has the advantage of allowing users to be fully
confident in their interaction, but comes with the disadvantage
of allowing competitors to view your work. Those that do
not have such transparancy are designated as ”opaque” or
”proprietary” contracts [1].

II. GOALS

Our first goal is to analyze high-level code that we will
acquire by using the Erays [1] software to reverse engineer
Ethereum bytecodes on the blockchain. The purpose of our
analysis shall be to examine the structure of said high-level
code to determine what, if any, vulnerabilities authors could
feasibly leave in their contracts. Whether intentional or
not, such vulnerabilities could have devastating effects for
Ethereum users should they interact with a malicious contract.

Similarly, we will examine the structure and patterns of
Ethereum bytecodes themselves. By comparing both the
bytecodes and high-level codes of different contract instances,
we hope to determine if any contract traits can be inferred
from the bytecodes themselves without any sort of reverse
engineering process being performed. This could allow us to
draw conclusions about how much knowledge Ethereum users
need to have in order to feel confident that a given contract
on the blockchain is indeed performing the advertised actions.

As our final goal, we plan to gain insight on current
initiatives to keep Ethereum smart contracts protected
from being reverse engineered. We would like to discuss
the advantages and disadvantages of this idea (from the
perspectives of both contract authors and customers), as well
as present the feasibility of such action based on current
research [2].

III. TOPIC

We will now introduce the main topics of our research,
which include the Ethereum Virtual Machine, the process
of reverse engineering smart contracts, and the purposes of



doing so.

A. The Ethereum Virtual Machine

As one of the Ethereum Virtual Machine (EVM) authors
writes, ”[the EVM exists] as one single entity maintained
by thousands of connected computers running an Ethereum
client” [3]. While other blockchains such as Bitcoin are
thought of as a distributed ledger, the Ethereum blockchain
has to keep track of a machine state as well as accounts and
balances. This is where the EVM comes in, which specifies
rules for this machine state and how it can change. The EVM
is necessary for the Ethereum blockchain to be programmable
- to run smart contracts.

While the EVM does keep track of a machine state, the
authors describe the transactions to be more broadly changing
a ”world state” [3]. As one cryptographic blog puts it, ”the
World State of Ethereum consists of a mapping of 160-bit
address identifiers and account [states]” [4]. Thus, each set
of transactions takes the entire Ethereum landscape from one
”world state” to another (seen in Figure 1), further implying
that this landscape as a whole can actually be represented ”as
a stack of transactions” [5]: if one were to pop transactions
off of the stack, thus ”undoing” them, one would theoretically
be able to represent the state of Ethereum at any desired
point in time.

Fig. 1. Representation of one world state being mapped to another through
a transaction [5].

B. Smart Contracts

If the EVM is the heart of the Ethereum body, then
smart contracts are the veins; they regulate the spending of
Ethereum coins by customers, and ensure those customers
get exactly what they asked for. They are the embodiment of
the state machine aspect of Ethereum: given a certain input,
they will provide a deterministic output.

To deploy or interact with a smart contract, users have
to pay a ”Gas cost,” which is essentially using Ethereum
tokens to pay for the computational power used to perform
the desired action with the given contract. Our investigation
will not require us to interact with the contracts in such a
direct way, so this cost will not be a concern of ours.

As we have mentioned, there are many reasons to reverse
engineer a smart contract on the Ethereum blockchain. The
team believes the main advantage to doing so lies in the
security aspect: if a customer could possibly be left vulnerable
to a malicious vendor (or, perhaps, a clueless one), then there
is much at risk, especially at higher levels of trading. This
malice could be expressed in a multitude of ways: remember
that smart contracts are deterministic, thus customers can,
with great confidence, expect what they will receive from a
given contract. If this were to ever not be the case, it would
be desirable for there to be a path to ensure that all contracts
can be efficiently reversed and confirmed. Another possible
path to harm would be in some form of code vulnerability that
exists in the contract itself: perhaps the author implemented
some sort of overflow attack, or something of the like, that
could harm the data of their customers.

Regardless of our finding any sort of vulnerabilities
(which, according to Hildenbrant et al. [6], are very real and
dangerous), we believe this study will be a valuable look into
how to reverse engineer binaries of a unique language and
architecture.

IV. METHODS OF INVESTIGATION

We will conduct our investigation on this topic by first
setting criteria for smart contracts to ensure they are relevant
to our research. Then, a set of Ethereum smart contract
bytecodes which fit our criteria will be acquired from the
public blockchain. These bytecodes will be compared to find
any patterns within its structure which may help indicate
its traits and purposes. Additionally, each bytecodes’ source
code will be analyzed and compared to gain a deeper
understanding on each contracts’ structure. To accomplish
this, these contract bytecodes will be decompiled into high
level code with the use of tools and observed for any other
noticeable patterns which may exist.

Tools exist to investigate the Ethereum blockchain and
decompile smart contracts. We will examine some of these
in more detail in section V, but broadly speaking they will
allow us to view deployed smart contracts and decompile
their bytecode into a high level language. Many smart
contracts also have their source code publicly available on
this platform, thus allowing use to the directly compare the
decompiled code to the source code.

Figure 2 shows an example of a smart contract’s source
code and the code decompiled from its deployed bytecode. In
this small function there are already many interesting insights
and questions. First, the the function to little endian 64 has
a different name in the decompiled code. This is because it is
a private function to the contract, it is not accessible to those
interacting with the contract. By contrast get deposit count
retains its name, because it is apart of the contract’s interface.
Another interesting part of the code is the storage access.



Smart contracts store persistent data in storage, so we can
gather from looking at this that deposit count is some
piece of data that needs to be persistent between calls to
the contract. There are also portions of the decompiled
code that are not yet clear to us. For example, why is it
that we lose the variable types, and what do var0 and var1 do?

Fig. 2. Side-by-side comparison of source code from a smart contract to the
code decompiled from its bytecode. Credit: Eth2 Deposit Contract

Figure 3 displays the translation from EVM bytecode to
human readable opcode. The EVM is a stack-based machine,
akin to other virtual machines like the JVM. This means that
operations are coupled with the stack, both getting values
and storing results onto it. An obvious exception to this rule
in the EVM PUSH opcode, which is unique for the fact that
it must have a specified operand. In other words one can’t
just call PUSH, it must be PUSH 0x*. It should be noted
that bytecode to opcode has a 1:1 translation, much like
assembly and binary. The ability to directly translate bytecode
to opcode could be integral in our reverse engineering efforts.
As we’ve learned, all tools have limitations. This gives us the
ability to directly verify what is happening under-the-hood
without purely relying on tools others have developed.

Fig. 3. Translation from EVM bytecode to human readable opcode. Credit:
Eth2 Deposit Contract

V. INVESTIGATION FOCUS

This investigation will focus on finding vulnerabilities or
traits within Ethereum smart contract bytecodes and source
codes to determine whether reverse engineering an Ethereum
contract is truly required for Ethereum users’ assurance that
the contract does what it is advertised to do. To decompile
smart contract bytecodes, an open-source software ”Erays”
[1] will be used. Another tool called etherscan.io will be used
to look up various attributes of deployed contracts and view
their source code if it’s been uploaded.

VI. MEMBERS’ ROLES

The following is the reiteration of the list of our team
members, as well as what role they will mainly serve
throughout the course of our project.

A. Davis Beilue

Research into smart contract mechanics and analyzing
high-level code structure. Mainly responsible for presentation
video.

B. Liam Bessell

Research into the Ethereum platform, using reverse
engineering tools (e.g. decompiler), examining EVM
bytecode.

C. Matthew Ho

Research into legality issues and data management. Mainly
responsible for PowerPoint presentation.

VII. DATA PLAN

Ethereum was founded by Vitalik Buterin on July, 2015.
The Erays software was developed and published by Yi
Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew
Miller, and Michael Bailey in ”Erays: Reverse Engineering
Ethereum’s Opaque Smart Contracts” [1] on 2018. The
contributors of this particular github respository which
contains a copy of the Erays software [7] we will utilize
are James Levy and Deepak Kumar. This Erays software
repository is licensed under MIT license [7], which grants
us permission to private use and modification of any kind.
Countless Ethereum smart contracts created by various
individuals exist in the blockchain, and most contracts have
an unlicense, or a license with no conditions and dedicates
works to the public domain. For this reason, having a
permissive license will be an important criteria for our
selection of smart contracts. Thus, we will only focus on
smart contracts under a license that grants us permission of
free use.

The technical goal of this project is to analyze and study
Ethereum smart contracts and to determine whether the
contracts themselves have the possibility to cause adverse
affects to its users through intentional or unintentional
vulnerabilities. Learning about this topic will help gain
knowledge that can be used in the future to ensure users’
safety when performing transactions through Ethereum smart
contracts.

Before dissemination, we will disclose any vulnerabilities
that we find to our academic supervisor and disseminate
only after approval is given by said supervisor. We will
only include findings which are approved and nonsensitive



in our report to avoid any negative impacts to the vendor.
Additionally, should any critical vulnerability found, we will
inform the supervisor and the vendor of such vulnerabilities
as soon as possible.

VIII. DEMO PLAN

Our final demonstration will consist, first and foremost, of
meaningful and appropriate results gathered through reverse
engineering Ethereum smart contracts. We will also give
an overview of blockchain technology and the Ethereum
platform. We plan on presenting said results and overview
with the use of a PowerPoint presentation and a demonstrative
video that will lay out our process of both reversing and data
gathering.

The following subsections further detail our plans for each
of these vessels.

A. PowerPoint Presentation

We will begin the presentation with some brief background
information about Ethereum which are necessary to understand
its process and inner workings. This will include explana-
tions on the concept of decentralized currencies and how
blockchains make them possible. Once sufficient background
information on Ethereum is presented, we will lay out our
investigation process on this topic by showing the smart
contracts’ bytecodes that we have decompiled along with
comparisons. To finalize, we will present our findings that
have been approved by our supervisor for dissemination, as
well as draw conclusions on the topic based on our findings.

B. Demo Video

We will choose a smart contract and go through the process
of reversing it from bytecode to a high level language. We
will utilize both tools (e.g. decompilers) and examine the
bytecode and opcode manually. With the original source code
available, we will compare both the opcode and reversed high
level code to the source code. We will also note common
patterns of EVM bytecode and inner-workings of the EVM.

IX. RESULTS AND ANALYSIS

We will now present our results and findings, along with
relevant analysis, after utilizing the given methods to pursue
our research goals.

A. Erays Analysis

In order to fully understand what Erays was accomplishing,
we used its reversing capabilities on non-opaque contracts.
What we found is that the output from Erays is closer to a
detailed pseudocode than a true representation of the flow and
structure of the original source code. This is partially due to
the method in which the authors have chosen to reverse the
bytecode, where the stack-based operations of the Ethereum

opcode are rewritten as register-based operations.

Now to display an example of Erays pseudocode in a side-
by-side with Solidity source code. This example is taken from
the GeneScience contract found at https://tinyurl.com/RE451.
Note that Etherium generates a separate instance of
pseudocode (an instance being a unique .pdf file) for each
function it detects during the reversing process, so the
following images do not represent a contract in its entirety:

Fig. 4. Source code from an example contract. Credit: GeneScience contract
at https://tinyurl.com/RE451

Fig. 5. Pseudocode obtained from Erays using the bytecode generated from
the sliceNumber function in the GeneScience contract [1].

Our initial analysis suggests that the pseudocode generated
by Erays is quite unique from the original source code in
terms of structure. The conversion of stack-based operations
to register-based operations, combined with the use of more
optimized and higher-level opcodes by the authors of Erays
during the reversing process likely contributes to this [1].
Still, we are able to match the source code to the pseudocode
based on the operations being done, as well as the return
value type.

This is further illustrated by another example retrieved
from a different function in the GeneScience contract:

Fig. 6. Source code from an example contract. Credit: GeneScience contract
at https://tinyurl.com/RE451

Once again, these two different representations of the same
function look nothing alike on the surface. Take, for instance,
the way the loop is handled. Besides the pseudocode using



Fig. 7. Pseudocode obtained from Erays using the bytecode generated from
the encode function in the GeneScience contract [1].

hexadecimal representation for the numbers, the structure
of the source code’s for-loop is almost inverted by the
pseudocode’s of an eternal while-loop and an if-statement
checking for the break condition. Just as in the first instance,
we are able to relate this pseudocode to the appropriate
source code by analyzing the operations being done by the
two side-by-side. In the context of a pure structural analysis
however, the two seem to bear no resemblance.

B. Bytecode Analysis

Analysis on bytecodes of Ethereum smart contracts
were accomplished by utilizing etherscan.io’s decompiler
tool which allows quick decompliation of smart contracts’
contract creation code into bytecode. Erays was also used
to further inspect bytecodes of smart contracts. Upon brief
analysis of contract bytecodes, we found some patterns in its
structure which seem to exist on all smart contract bytecodes.

A smart contract’s bytecode is identical to its creation
code aside for a certain number of characters at the head of
the creation code. The contract creation code contains some
amount of characters which are excluded from the bytecode,
and seem to possess structure completely identical to its
bytecode after the described discrepancy. An example of the
characters exclusive to the contract creation code can be seen
in Figure 8.

Fig. 8. Unhighlighted section of string showing characters excluded from
contract bytecode Credit: GeneScience contract at https://tinyurl.com/RE451

To better understand the purpose and functionality
of these bytecode characters which are exclusive to the

contract creation code, we decompiled the aforementioned
characters with Erays and obtained some high-level code.
Interestingly, Erays outputs code which does not resemble
the source code of the contract. Furthermore, the code
contains functions which are not seen in the original bytecode
itself, such as ”codecopy”. codecopy(t,f,s) copies s bytes
while f is the source and t is the destination. The function
is also always called at the end of a code, as shown in figure 9.

Fig. 9. High-level representation of the bytecodes of GeneScience contract
that are exclusive to the contract creation code produced by Erays which
shows the usage of the codecopy function [1]

These findings imply that the bytecodes that are only
exclusively found in contract creation codes serve as a header
which sets up and finalizes a smart contract to be deployed
in the blockchain since this pattern holds true for other smart
contracts. For these reasons, it may help to utilize these
bytecode headers when analyzing ethereum smart contracts
as they could contain important information regarding the
smart contract’s functionality.

C. Malicious Contracts and Counter Initiatives

Smart contract security and detection of malicious contracts
is a large and growing area. In this subsection we examine
malicious smart contracts and attempt to reverse engineer
them such that we can learn their true purpose.

The general concept of a honeypot is to lure people into
taking some action via a supposed reward. During or after the
action the person pursuing the honeypot hits a trap and takes
a loss. On the Ethereum blockchain there exist honeypot
smart contracts which seek to fool people into interacting
with them. In this way the contract (and thus owner of the
contract) can get away with some of their Ether.

The King of the Hill smart contract [8] is an example of
a real honeypot that existed on the Ethereum blockchain.
The contract advertised that whoever had the largest stake
in the contract was the owner. In actuality, the owner was
immutable, and set to the user who deployed the contract. We
performed a static analysis of the contract to ascertain this
fact. First, we took the EVM runtime bytecode of the contract
and put it into a Solidity decompiler (https://ethervm.io/).
Solidity is the most popular high level language to write
Ethereum smart contracts. Next we analyzed the decompiled
Solidity code to search for the exploit. We found the exploit



by viewing the decompiled functions and observing the
discrepancy between the Stake and Withdraw owner state
variables. They both reference different owner variables. The
latter is the pseudo-owner, while the former is the actual
owner set at contract deployment.

See this demo video for a deep dive analysis we made of the
King of the Hill honeypot: https://youtu.be/m7SsdFWLtRo.

X. CONCLUSIONS

We will now present the conclusions we have drawn based
on the results and analysis given above. Overall we learned
a great deal more about reverse engineering, blockchains,
and the Ethereum ecosystem. One motivation for reverse
engineering smart contracts is the fact that the Ethereum
network is decentralized, there is no central entity that has to
help you if something goes wrong.

A. Conclusions on Erays

After comparing various instances of Erays pseudocode
to the respective original source code functions, it is
our conclusion that, while the same operations are being
represented, the structural differences of the two are enough
to entirely obscure the structure of the source code. Note that,
while we ran our tests with transparent contracts, this means
that the code structure of opaque contracts will remain hidden.
In terms of our original research goals, this implies that
structural vulnerabilities in source code cannot be detected
simply by using the open-source software of Erays. What
it further implies is that those who wish to attack a smart
contract through structural methods (buffer overflow attacks,
for instance) will find no use from this resource, which we
deem as a positive for the creators and those who wish to use
Erays in earnest.

Our results led us to some interesting questions about the
structure, however: in the case of the loop highlighted in
Figure 6 and Figure 7, what if the same loop were stated
different ways in the source code? Would Erays generate the
same pseudocode, or would it be different? The results of
such a study might have impacts on our current conclusion,
but due to certain limitations on what contracts Erays can
reverse (a contract has to have been published at the time
the most recent Erays version is released for it to be seen as
valid by the software), we were unable to conduct such tests
at this time.

B. Conclusions on Bytecode Analysis

Regarding analysis of Ethereum smart contract bytecodes,
we have concluded that there are recurring patterns for any
and all sets of smart contracts. The header, which appears
only exclusively in the contract creation code, is an additional
part of smart contracts’ bytecodes which finalizes and deploys

them to the Ethereum blockchain. We were able to reach this
conclusion by utilizing the Erays software and analyzing the
special bytecode headers taken from various contracts in their
high-level structure. This essentially implies that all smart
contracts have a recurring, common pattern and this could
be a cause for concern regarding their security. Recurring
patterns within contracts like these may help attackers find
vulnerabilities within them and, eventually, exploit them.
Although it is unlikely that the specific header bytecodes we
analyzed themselves can become a vulnerability for smart
contracts, the same concept can be applied to the contracts’
source bytecodes.

C. Conclusions on Malicious Contracts

In this project we confirmed our suspicions that there at
least have existed malicious smart contracts on the Ethereum
blockchain. We saw this in the King of the Hill honeypot
smart contract, where users could be fooled into staking their
Ether without knowing they wouldn’t get it back. It seems
safe to assume there exist more of these types of contracts on
the Ethereum blockchain, thus it is important for members
of the Ethereum community to be educated about the risk
posed by them. While we hold it is prudent to invest in more
smart contract reverse engineering tools, we also believe it’s
unreasonable to expect a lay user of the ecosystem to reverse
engineer these contracts. Hence, we assert community efforts
to (1) make contract source code open-source or (2) reverse
engineer smart contracts for the public to view is a good
step towards making people more confident in the Ethereum
ecosystem as a whole.

REFERENCES

[1] Y. Zhou, D. Kumar, S. Bakshi, A. M. Joshua Mason, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,” USENIX
The Advanced Computing Systems Association, 2018.

[2] T. L. O. of Eric Lewin. (2017) Reverse engineering
smart contracts: Let’s not kill all the lawyers (or anyone
else) just yet. [Online]. Available: https://www.ericlewin.net/wp-
content/uploads/2018/06/Thought-Leadership-Smart-Contracts.pdf

[3] axic: https://github.com/axic. (2021) Ethereum virtual machine (evm).
[Online]. Available: https://ethereum.org/en/developers/docs/evm/

[4] T. Jain. (2020) Ethereum virtual machine tutorial — ethereum blockchain.
[Online]. Available: https://www.cryptoknowmics.com/news/ethereum-
virtual-machine-tutorial-ethereum-blockchain

[5] T. T. (2018) Ethereum evm illustrated. [Online]. Available:
https://takenobu-hs.github.io

[6] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “Kevm: A
complete formal semantics of the ethereum virtual machine,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF), 2018, pp.
204–217.

[7] teamnsrg: https://github.com/teamnsrg/erays. (2018) Ethereum
smart contract reverse engineering. [Online]. Available:
https://github.com/teamnsrg/erays/blob/master/LICENSE

[8] T. of Bits. (2020) Not so smart contracts. [Online]. Available:
https://github.com/crytic/not-so-smart-contracts


